172 research outputs found

    The Biological Basis of a Universal Constraint on Color Naming: Cone Contrasts and the Two-Way Categorization of Colors

    Get PDF
    Many studies have provided evidence for the existence of universal constraints on color categorization or naming in various languages, but the biological basis of these constraints is unknown. A recent study of the pattern of color categorization across numerous languages has suggested that these patterns tend to avoid straddling a region in color space at or near the border between the English composite categories of “warm” and “cool”. This fault line in color space represents a fundamental constraint on color naming. Here we report that the two-way categorization along the fault line is correlated with the sign of the L- versus M-cone contrast of a stimulus color. Moreover, we found that the sign of the L-M cone contrast also accounted for the two-way clustering of the spatially distributed neural responses in small regions of the macaque primary visual cortex, visualized with optical imaging. These small regions correspond to the hue maps, where our previous study found a spatially organized representation of stimulus hue. Altogether, these results establish a direct link between a universal constraint on color naming and the cone-specific information that is represented in the primate early visual system

    Provably scale-covariant networks from oriented quasi quadrature measures in cascade

    Full text link
    This article presents a continuous model for hierarchical networks based on a combination of mathematically derived models of receptive fields and biologically inspired computations. Based on a functional model of complex cells in terms of an oriented quasi quadrature combination of first- and second-order directional Gaussian derivatives, we couple such primitive computations in cascade over combinatorial expansions over image orientations. Scale-space properties of the computational primitives are analysed and it is shown that the resulting representation allows for provable scale and rotation covariance. A prototype application to texture analysis is developed and it is demonstrated that a simplified mean-reduced representation of the resulting QuasiQuadNet leads to promising experimental results on three texture datasets.Comment: 12 pages, 3 figures, 1 tabl

    An Empirical Explanation of the Speed-Distance Effect

    Get PDF
    Understanding motion perception continues to be the subject of much debate, a central challenge being to account for why the speeds and directions seen accord with neither the physical movements of objects nor their projected movements on the retina. Here we investigate the varied perceptions of speed that occur when stimuli moving across the retina traverse different projected distances (the speed-distance effect). By analyzing a database of moving objects projected onto an image plane we show that this phenomenology can be quantitatively accounted for by the frequency of occurrence of image speeds generated by perspective transformation. These results indicate that speed-distance effects are determined empirically from accumulated past experience with the relationship between image speeds and moving objects

    Factors affecting the intention of providers to deliver more effective continuing medical education to general practitioners: a pilot study

    Get PDF
    BACKGROUND: Despite the importance of continuing medical education (CME) for GPs, there has been little research into how providers decide what types of CME to deliver to GPs. This study aimed to identify factors affecting the intention of providers to provide more effective types of CME; and to design a survey instrument which can be used to test the applicability of Triandis' model of social behaviour to the provision of CME to general practitioners. METHODS: This was a cross-sectional study on a convenience sample of 11 Australian providers of CME for interviews and a random sample of 25 providers for the pilot test. Open-ended interviews structured on Triandis' theory were performed with key informants who provide CME to GPs. These were used to develop a pilot survey instrument to measure the factors affecting intention, resulting in a revised instrument for use in further research. RESULTS: There was a broad range of factors affecting providers' intention to deliver more effective forms of CME identified, and these were classifiable in a manner which was consistent with Triandis' model. Key factors affecting providers' intention were the attitude toward CME within organisations and the time and extra work involved. CONCLUSIONS: We identified a range of potential factors influencing the intention of providers to provide more effective forms of CME, in all categories of Triandis model. Those interested in increasing the choice of more effective CME activities available to GPs may need to broaden the methods used in working with providers to influence them to use more effective CME techniques. The interview material and questionnaire analysis of the pilot survey support the use of Triandis model. Further research is needed to validate Triandis'model for the intention to deliver more effective forms of CME. Such research will inform future strategies aimed at increasing the amount and choice of effective CME activities available for GPs

    A neural signature of the unique hues

    Get PDF
    Since at least the 17th century there has been the idea that there are four simple and perceptually pure “unique” hues: red, yellow, green, and blue, and that all other hues are perceived as mixtures of these four hues. However, sustained scientific investigation has not yet provided solid evidence for a neural representation that separates the unique hues from other colors. We measured event-related potentials elicited from unique hues and the ‘intermediate’ hues in between them. We find a neural signature of the unique hues 230 ms after stimulus onset at a post-perceptual stage of visual processing. Specifically, the posterior P2 component over the parieto-occipital lobe peaked significantly earlier for the unique than for the intermediate hues (Z = -2.9, p = .004). Having identified a neural marker for unique hues, fundamental questions about the contribution of neural hardwiring, language and environment to the unique hues can now be addressed

    The influence of spatial pattern on visual short-term memory for contrast

    Get PDF
    Several psychophysical studies of visual short-term memory (VSTM) have shown high-fidelity storage capacity for many properties of visual stimuli. On judgments of the spatial frequency of gratings, for example, discrimination performance does not decrease significantly, even for memory intervals of up to 30 s. For other properties, such as stimulus orientation and contrast, however, such “perfect storage” behavior is not found, although the reasons for this difference remain unresolved. Here, we report two experiments in which we investigated the nature of the representation of stimulus contrast in VSTM using spatially complex, two-dimensional random-noise stimuli. We addressed whether information about contrast per se is retained during the memory interval by using a test stimulus with the same spatial structure but either the same or the opposite local contrast polarity, with respect to the comparison (i.e., remembered) stimulus. We found that discrimination thresholds got steadily worse with increasing duration of the memory interval. Furthermore, performance was better when the test and comparison stimuli had the same local contrast polarity than when they were contrast-reversed. Finally, when a noise mask was introduced during the memory interval, its disruptive effect was maximal when the spatial configuration of its constituent elements was uncorrelated with those of the comparison and test stimuli. These results suggest that VSTMfor contrast is closely tied to the spatial configuration of stimuli and is not transformed into a more abstract representation

    Visual adaptation alters the apparent speed of real-world actions

    Get PDF
    The apparent physical speed of an object in the field of view remains constant despite variations in retinal velocity due to viewing conditions (velocity constancy). For example, people and cars appear to move across the field of view at the same objective speed regardless of distance. In this study a series of experiments investigated the visual processes underpinning judgements of objective speed using an adaptation paradigm and video recordings of natural human locomotion. Viewing a video played in slow-motion for 30seconds caused participants to perceive subsequently viewed clips played at standard speed as too fast, so playback had to be slowed down in order for it to appear natural; conversely after viewing fast-forward videos for 30seconds, playback had to be speeded up in order to appear natural. The perceived speed of locomotion shifted towards the speed depicted in the adapting video (‘re-normalisation’). Results were qualitatively different from those obtained in previously reported studies of retinal velocity adaptation. Adapting videos that were scrambled to remove recognizable human figures or coherent motion caused significant, though smaller shifts in apparent locomotion speed, indicating that both low-level and high-level visual properties of the adapting stimulus contributed to the changes in apparent speed

    A Computational Model of Visual Anisotropy

    Get PDF
    Visual anisotropy has been demonstrated in multiple tasks where performance differs between vertical, horizontal, and oblique orientations of the stimuli. We explain some principles of visual anisotropy by anisotropic smoothing, which is based on a variation on Koenderink's approach in [1]. We tested the theory by presenting Gaussian elongated luminance profiles and measuring the perceived orientations by means of an adjustment task. Our framework is based on the smoothing of the image with elliptical Gaussian kernels and it correctly predicted an illusory orientation bias towards the vertical axis. We discuss the scope of the theory in the context of other anisotropies in perception

    Motor expertise modulates the unconscious processing of human body postures

    Get PDF
    Little is known about the cognitive background of unconscious visuomotor control of complex sports movements. Therefore, we investigated the extent to which novices and skilled high-jump athletes are able to identify visually presented body postures of the high jump unconsciously. We also asked whether or not the manner of processing differs (qualitatively or quantitatively) between these groups as a function of their motor expertise. A priming experiment with not consciously perceivable stimuli was designed to determine whether subliminal priming of movement phases (same vs. different movement phases) or temporal order (i.e. natural vs. reversed movement order) affects target processing. Participants had to decide which phase of the high jump (approach vs. flight phase) a target photograph was taken from. We found a main effect of temporal order for skilled athletes, that is, faster reaction times for prime-target pairs that reflected the natural movement order as opposed to the reversed movement order. This result indicates that temporal-order information pertaining to the domain of expertise plays a critical role in athletes’ perceptual capacities. For novices, data analyses revealed an interaction between temporal order and movement phases. That is, only the reversed movement order of flight-approach pictures increased processing time. Taken together, the results suggest that the structure of cognitive movement representation modulates unconscious processing of movement pictures and points to a functional role of motor representations in visual perception
    • 

    corecore